API/Reference
Mueller.hwp
Mueller.linear_polarizer
Mueller.mirror
Mueller.polellipse
Mueller.qwp
Mueller.rotate
Mueller.rotation
Mueller.waveplate
Mueller.hwp
— Functionhwp([T=Float64], θ=0)
A half-wave plate (HWP) with fast axis oriented at angle θ
, in radians.
Examples
julia> M = hwp()
4×4 StaticArrays.SMatrix{4, 4, Float64, 16} with indices SOneTo(4)×SOneTo(4):
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 -1.0 -1.22465e-16
0.0 -0.0 1.22465e-16 -1.0
julia> S = [1, 1, 0, 0]; # I, Q, U, V
julia> M * S # allow +Q through unchanged
4-element StaticArrays.SVector{4, Float64} with indices SOneTo(4):
1.0
1.0
0.0
0.0
julia> rotate(M, π/8) * S # switch +Q to +U
4-element StaticArrays.SVector{4, Float64} with indices SOneTo(4):
1.0
1.9967346175427393e-16
1.0
-8.659560562354932e-17
See also
Mueller.linear_polarizer
— Functionlinear_polarizer([T=Float64], θ=0; p=1)
A linear polarizer with the throughput axis given by θ
, in radians, by default horizontal. The partial polarization can be given with the p
keyword argument, which changes the intensity by a factor of p^2/2
.
Examples
julia> M = linear_polarizer()
4×4 StaticArrays.SMatrix{4, 4, Float64, 16} with indices SOneTo(4)×SOneTo(4):
0.5 0.5 0.0 0.0
0.5 0.5 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
julia> S = [1, 0, 0, 0]; # I, Q, U, V
julia> M * S # only horizontal component (+Q) remains
4-element StaticArrays.SVector{4, Float64} with indices SOneTo(4):
0.5
0.5
0.0
0.0
Mueller.mirror
— Functionmirror([T=Float64], r=1, δ=π, θ=0)
A reflective mirror with reflectance r
, oriented at angle θ
, in radians, compared to the reference frame of the light, and with phase shift δ
, in radians. An ideal mirror will have perfect reflectance (1) and a half-wave phase shift (π).
Examples
julia> M = mirror()
4×4 StaticArrays.SMatrix{4, 4, Float64, 16} with indices SOneTo(4)×SOneTo(4):
1.0 0.0 0.0 0.0
0.0 1.0 0.0 -0.0
0.0 0.0 -1.0 1.22465e-16
0.0 0.0 -1.22465e-16 -1.0
julia> S = [1, 1, 0, 0]; # I, Q, U, V
julia> M * S # no change
4-element StaticArrays.SVector{4, Float64} with indices SOneTo(4):
1.0
1.0
0.0
0.0
julia> mirror(1, π, π/4) * S # rotates polarized light
4-element StaticArrays.SVector{4, Float64} with indices SOneTo(4):
1.0
-1.0
1.2246467991473532e-16
1.2246467991473532e-16
Mueller.polellipse
— Functionpolellipse(S)
polellipse!(S)
Plot the polarizatio ellipse for the given Stokes parameters. The polarization ellipse draws the path of the eletric field over one wavelength. The input vector should be a Stokes vector [I, Q, U, V]
. This is a user recipe and can be composed with other plot recipes.
Mueller.qwp
— Functionqwp([T=Float64], θ=0)
A quarter-wave plate (QWP) with fast axis oriented at angle θ
, in radians.
Examples
julia> M = qwp()
4×4 StaticArrays.SMatrix{4, 4, Float64, 16} with indices SOneTo(4)×SOneTo(4):
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 6.12323e-17 -1.0
0.0 -0.0 1.0 6.12323e-17
julia> S = [1, 1, 0, 0]; # I, Q, U, V
julia> M * S # allow +Q through unchanged
4-element StaticArrays.SVector{4, Float64} with indices SOneTo(4):
1.0
1.0
0.0
0.0
julia> qwp(-π/4) * S # switch +Q to +V
4-element StaticArrays.SVector{4, Float64} with indices SOneTo(4):
1.0
6.123233995736766e-17
-6.123233995736765e-17
1.0
See also
Mueller.rotate
— Methodrotate(M, θ)
Rotates the component represented by the Mueller matrix M
counter-clockwise by angle θ
(in radians).
Examples
julia> M = linear_polarizer();
julia> Mr = rotate(M, π/2);
julia> Mr ≈ linear_polarizer(π/2)
true
See also
Mueller.rotation
— Methodrotation([T=Float64], θ)
Generate a rotation matrix with the given angle, in radians, θ
. This can be used to rotate the axes of polarization components arbitrarily. For convenience, the rotate
method will rotate a component, without having to generate this matrix, itself.
Examples
Rotate a linear polarizer by 90 degrees counter-clockwise
julia> M = linear_polarizer();
julia> r = rotation(π/4);
julia> Mr = r' * M * r;
julia> Mr ≈ linear_polarizer(π/4)
true
See also
Mueller.waveplate
— Functionwaveplate([T=Float64], δ=0, θ=0)
A generic phase retarder (waveplate) with fast axis aligned with angle θ
, in radians, and phase delay of δ
, in radians, along the slow axis.
Examples
julia> M = waveplate(π);
julia> M ≈ hwp()
true
julia> M = waveplate(π/2, π/4);
julia> M ≈ qwp(π/4)
true
See also