Geant4 Support

SolidStateDetectors.jl provides an extension for Geant4.jl. This extension allows to simulate realistic event distributions resulting from particles emitted by a given source, which can be used as input to the waveform simulation.

To use the extension, both SolidStateDetectors and Geant4 have to be loaded.

using SolidStateDetectors
using Geant4

In order to run Geant4 simulations, a Geant4.G4JLApplication needs to be defined based on the detector geometry and the particle source. The extension features a function that creates a Geant4.G4JLApplcation from an SSD Simulation object and a particle source.

using Plots
using Unitful

Two types of particle source are pre-defined in SolidStateDetectors:

1. MonoenergeticSource

This source emits particles of the same type and same energy.

source_1 = MonoenergeticSource(
    "gamma",                              # Type of particle beam
    2.615u"MeV",                          # Energy of particle
    CartesianPoint(0.065, 0., 0.05),      # Location of the source
    CartesianVector(-1,0,0),              # Direction of the source
    10u"°"                                # Opening angle of the source emission
)
MonoenergeticSource("gamma", 2.615 MeV, [0.065, 0.0, 0.05], [-1.0, 0.0, 0.0], 10°)
  • The particle type is given as a string (e.g. "e-" or "gamma") and directly passed to Geant4. See the Geant4 documentation on how to name the desired particle type.
  • The energy of the emitted particles is passed as a number with unit.
  • The position of the particle source relative to the origin is defined by a CartesianPoint (in units of m).
  • The source can emit particles in a given direction if a CartesianVector is provided. If not, the emission is isotropic.
  • If an opening_angle is provided, the source emits via a directed cone with the defined opening angle.

2. IsotopeSource

This source emits particles based on the radioactive decay chain of a given isotope.

source_2 = IsotopeSource(
    82,                                # Number of protons
    212,                               # Total number of nucleons
    0.0,                               # Excitation energy
    0.0,                               # Ion charge
    CartesianPoint(0.06, 0, 0.05),     # Location of the source
    CartesianVector(-1,0,0),           # Direction of the source
    10u"°"                             # Opening angle of the source emission
)
IsotopeSource(82, 212, 0.0, 0.0, [0.06, 0.0, 0.05], [-1.0, 0.0, 0.0], 10°)

The source is defined using

  • The number of protons Z and the number of nucleons A in the isotope. <br/>
  • The excitation energy
  • The charge of the isotope
  • The position, direction and opening angle from the source can be defined in the same way as for a MonoenergeticSource

The particle source can now be plotted together with the detector, as well as the direction in which particles are emitted.

T = Float32
sim = Simulation{T}(SSD_examples[:InvertedCoaxInCryostat])
plot(sim.detector, size = (500,500))
plot!(source_1)

detector

A Geant4.G4JLApplication is built from a SSD Simulation sim and one of the previously defined particle sources, e.g. source_1.

Internally, a GDML file is created that is subsequently read in by Geant4.jl. <br/> If needed, the resulting GDML file can also be saved by using the Geant4.G4JLDetector(sim, "output_filename.gdml") command.

app = G4JLApplication(sim, source_1, verbose = false);

The method run_geant4_simulation is used to generate a given number of events.

N_events = 50000
events = run_geant4_simulation(app, N_events)
Table with 5 columns and 50000 rows:
      evtno  detno                 thit                  edep                  ⋯
    ┌───────────────────────────────────────────────────────────────────────────
 1  │ 1      Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 2  │ 2      Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 3  │ 3      Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 4  │ 4      Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 5  │ 5      Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 6  │ 6      Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 7  │ 7      Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 8  │ 8      Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 9  │ 9      Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 10 │ 10     Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 11 │ 11     Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 12 │ 12     Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 13 │ 13     Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 14 │ 14     Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 15 │ 15     Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 16 │ 16     Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 17 │ 17     Int32[1, 1, 1, 1, 1…  Quantity{Float32, 𝐓…  Quantity{Float32, 𝐋…  ⋯
 ⋮  │   ⋮             ⋮                     ⋮                     ⋮            ⋱

Each entry of the table corresponds to one event and consists of five fields:

  • evtno: Event number
  • detno: Index of the detector where the energy was deposited
  • thit: Time of the interaction
  • edep: Amount of energy that was deposited in the detector
  • pos: Position where the interaction happened

By extracting the position of each energy deposition from events, the spatial distribution of the events inside the detector can be plotted:

plot(sim.detector, show_passives = false, size = (500,500), fmt = :png)
plot!(source_1)
plot!(CartesianPoint.(broadcast(p -> ustrip.(u"m", p), events[1:1000].pos.data)), ms = 0.5, msw = 0, color=:black, label = "")

events

The output of run_geant4_simulation can be stored using the LegendHDF5IO package:

using LegendHDF5IO

lh5open("simulation_output.lh5", "w") do h
     LegendHDF5IO.writedata(h.data_store, "SimulationData", events)
end

events_in = lh5open("simulation_output.lh5", "r") do h
    LegendHDF5IO.readdata(h.data_store, "SimulationData")
end

In order to visualize the energy spectrum of the events in a histogram, you can use the following code:

using StatsBase

h = fit(Histogram, ustrip.(u"keV", sum.(events.edep)), Weights(fill(10,length(events.edep))), 0:10:3000)

plot(h, title = "Energy spectrum", bins = 500, yscale = :log10, st = :step, label = "")
xlims!(0,3000, xlabel = "E in keV", ylabel = "counts")

spectrum

Now that the energy depositions in the detector are simulated, they can be passed to SSD to calculate the corresponding waveforms. This requires to calculate the electric potential, the electric field and the weighting potential of the detector first.

sim.detector = SolidStateDetector(sim.detector, ADLChargeDriftModel(T=T))
calculate_electric_potential!(sim, refinement_limits = [0.4,0.2,0.1,0.06], verbose = false)
calculate_electric_field!(sim, n_points_in_φ = 10)
calculate_weighting_potential!(sim, 1, refinement_limits = [0.4,0.2,0.1,0.06], verbose = false)

The waveforms can be simulated using simulate_waveforms:

wf = simulate_waveforms(events[1:100], sim, Δt = 1u"ns", max_nsteps = 2000)
plot(wf[1:20].waveform, label = "")
[ Info: Detector has 2 contacts
[ Info: Table has 100 physics events (4434 single charge depositions).

Progress:   2%|▉                                        |  ETA: 0:02:35
Progress:  14%|█████▊                                   |  ETA: 0:00:24
Progress:  32%|█████████████▏                           |  ETA: 0:00:10
Progress:  47%|███████████████████▎                     |  ETA: 0:00:06
Progress:  60%|████████████████████████▋                |  ETA: 0:00:04
Progress:  80%|████████████████████████████████▊        |  ETA: 0:00:02
Progress: 100%|█████████████████████████████████████████| Time: 0:00:07
[ Info: Generating waveforms...

waveforms

We can add some baseline and tail to the pulses to match their lengths (in this case to 2000ns):

w = add_baseline_and_extend_tail.(wf.waveform, 100, 2000)
plot(w[1:20], label = "")

wf_and_amplitude


This page was generated using Literate.jl.