Geant4 Support
SolidStateDetectors.jl provides an extension for Geant4.jl. This extension allows to simulate realistic event distributions resulting from particles emitted by a given source, which can be used as input to the waveform simulation.
To use the extension, both SolidStateDetectors
and Geant4
have to be loaded.
using SolidStateDetectors
using Geant4
In order to run Geant4
simulations, a Geant4.G4JLApplication
needs to be defined based on the detector geometry and the particle source. The extension features a function that creates a Geant4.G4JLApplcation
from an SSD Simulation
object and a particle source.
using Plots
using Unitful
Two types of particle source are pre-defined in SolidStateDetectors
:
1. MonoenergeticSource
This source emits particles of the same type and same energy.
source_1 = MonoenergeticSource(
"gamma", # Type of particle beam
2.615u"MeV", # Energy of particle
CartesianPoint(0.065, 0., 0.05), # Location of the source
CartesianVector(-1,0,0), # Direction of the source
10u"°" # Opening angle of the source emission
)
MonoenergeticSource("gamma", 2.615 MeV, [0.065, 0.0, 0.05], [-1.0, 0.0, 0.0], 10°)
- The particle type is given as a string (e.g.
"e-"
or"gamma"
) and directly passed toGeant4
. See theGeant4
documentation on how to name the desired particle type. - The energy of the emitted particles is passed as a number with unit.
- The
position
of the particle source relative to the origin is defined by aCartesianPoint
(in units ofm
). - The source can emit particles in a given
direction
if aCartesianVector
is provided. If not, the emission is isotropic. - If an
opening_angle
is provided, the source emits via a directed cone with the defined opening angle.
2. IsotopeSource
This source emits particles based on the radioactive decay chain of a given isotope.
source_2 = IsotopeSource(
82, # Number of protons
212, # Total number of nucleons
0.0, # Excitation energy
0.0, # Ion charge
CartesianPoint(0.06, 0, 0.05), # Location of the source
CartesianVector(-1,0,0), # Direction of the source
10u"°" # Opening angle of the source emission
)
IsotopeSource(82, 212, 0.0, 0.0, [0.06, 0.0, 0.05], [-1.0, 0.0, 0.0], 10°)
The source is defined using
- The number of protons
Z
and the number of nucleonsA
in the isotope. <br/> - The excitation energy
- The charge of the isotope
- The position, direction and opening angle from the source can be defined in the same way as for a
MonoenergeticSource
The particle source can now be plotted together with the detector, as well as the direction in which particles are emitted.
T = Float32
sim = Simulation{T}(SSD_examples[:InvertedCoaxInCryostat])
plot(sim.detector, size = (500,500))
plot!(source_1)
A Geant4.G4JLApplication
is built from a SSD Simulation
sim
and one of the previously defined particle sources, e.g. source_1
.
Internally, a GDML file is created that is subsequently read in by Geant4.jl
. <br/> If needed, the resulting GDML file can also be saved by using the Geant4.G4JLDetector(sim, "output_filename.gdml")
command.
app = G4JLApplication(sim, source_1, verbose = false);
The method run_geant4_simulation
is used to generate a given number of events.
N_events = 50000
events = run_geant4_simulation(app, N_events)
Table with 5 columns and 50000 rows:
evtno detno thit edep ⋯
┌───────────────────────────────────────────────────────────────────────────
1 │ 1 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
2 │ 2 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
3 │ 3 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
4 │ 4 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
5 │ 5 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
6 │ 6 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
7 │ 7 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
8 │ 8 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
9 │ 9 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
10 │ 10 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
11 │ 11 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
12 │ 12 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
13 │ 13 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
14 │ 14 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
15 │ 15 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
16 │ 16 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
17 │ 17 Int32[1, 1, 1, 1, 1… Quantity{Float32, 𝐓… Quantity{Float32, 𝐋… ⋯
⋮ │ ⋮ ⋮ ⋮ ⋮ ⋱
Each entry of the table corresponds to one event and consists of five fields:
evtno
: Event numberdetno
: Index of the detector where the energy was depositedthit
: Time of the interactionedep
: Amount of energy that was deposited in the detectorpos
: Position where the interaction happened
By extracting the position of each energy deposition from events
, the spatial distribution of the events inside the detector can be plotted:
plot(sim.detector, show_passives = false, size = (500,500), fmt = :png)
plot!(source_1)
plot!(CartesianPoint.(broadcast(p -> ustrip.(u"m", p), events[1:1000].pos.data)), ms = 0.5, msw = 0, color=:black, label = "")
The output of run_geant4_simulation
can be stored using the LegendHDF5IO
package:
using LegendHDF5IO
lh5open("simulation_output.lh5", "w") do h
LegendHDF5IO.writedata(h.data_store, "SimulationData", events)
end
events_in = lh5open("simulation_output.lh5", "r") do h
LegendHDF5IO.readdata(h.data_store, "SimulationData")
end
In order to visualize the energy spectrum of the events in a histogram, you can use the following code:
using StatsBase
h = fit(Histogram, ustrip.(u"keV", sum.(events.edep)), Weights(fill(10,length(events.edep))), 0:10:3000)
plot(h, title = "Energy spectrum", bins = 500, yscale = :log10, st = :step, label = "")
xlims!(0,3000, xlabel = "E in keV", ylabel = "counts")
Now that the energy depositions in the detector are simulated, they can be passed to SSD to calculate the corresponding waveforms. This requires to calculate the electric potential, the electric field and the weighting potential of the detector first.
sim.detector = SolidStateDetector(sim.detector, ADLChargeDriftModel(T=T))
calculate_electric_potential!(sim, refinement_limits = [0.4,0.2,0.1,0.06], verbose = false)
calculate_electric_field!(sim, n_points_in_φ = 10)
calculate_weighting_potential!(sim, 1, refinement_limits = [0.4,0.2,0.1,0.06], verbose = false)
The waveforms can be simulated using simulate_waveforms
:
wf = simulate_waveforms(events[1:100], sim, Δt = 1u"ns", max_nsteps = 2000)
plot(wf[1:20].waveform, label = "")
[ Info: Detector has 2 contacts
[ Info: Table has 100 physics events (4434 single charge depositions).
Progress: 2%|▉ | ETA: 0:02:35
Progress: 14%|█████▊ | ETA: 0:00:24
Progress: 32%|█████████████▏ | ETA: 0:00:10
Progress: 47%|███████████████████▎ | ETA: 0:00:06
Progress: 60%|████████████████████████▋ | ETA: 0:00:04
Progress: 80%|████████████████████████████████▊ | ETA: 0:00:02
Progress: 100%|█████████████████████████████████████████| Time: 0:00:07
[ Info: Generating waveforms...
We can add some baseline and tail to the pulses to match their lengths (in this case to 2000ns):
w = add_baseline_and_extend_tail.(wf.waveform, 100, 2000)
plot(w[1:20], label = "")
This page was generated using Literate.jl.